[image: image1.png]Download LinkedList java into the same directory as List java from the in class activity
2. Study the simple LinkedList implementation in the source code. Compare and contrast
from the Linked List implementation in C.
3. Implement the remove method for LinkedList java
. You can test it by removing the commented code on line 39 of Main
running it
4. Notice the the size method on LinkedList is really slow. We can do better, but instead of
‘modifying LinkedList, let's make it better by extending it using inheritance.
5. Download FastLinkedListjava as well.
To make size faster, we'll need to keep track of the size when the list changes. So when
size(is called, we can just return the size, instead of calculating it.

o

7. However, we have to change the behavior of add and remove method to update the
size. Implement the new get and remove.
a. Hint: You DO NOT have to rewrite the add and remove method from LinkedList.
You can reuse the the LinkedList's method by calling *super.add()" and
“super.remove()".
8. Finally, we'll add a new method to FastLinkedList java called prettyPrint(). It shouid
output the list similar to the way we did in C.

Example output:
a->b->c->d-> NLL

9. Note the @Override annotation in FastLinkedList java. Try removing them. Does it
change anything? If not, why do you think it's there to begin with? Search the intemet to
find the answer.

10. Submit two files to Blackboard: LinkedListjava and FastLinkedList java

References to help with the assignment:

htp://docs oracle.com/javase/tutorial/java/landl/index.html

...

public interface List<T> {

 public void add(T item) throws IndexOutOfBoundsException;

 public T get(int i) throws IndexOutOfBoundsException;

 public T remove(int i);

 public int size();

 default void println() {

 System.out.print("[");

 for (int i = 0; i < size()-1; i++) {

 System.out.print(get(i) + ",");

 }

 if (size() > 0) {

 System.out.println(get(size()-1) + "]");

 }

 }

}

...

public class LinkedList<T> implements List<T> {

 private class Node<T> {

 public T value;

 public Node<T> next;

 }

 private Node<T> head;

 public void add(T item) throws IndexOutOfBoundsException {

 Node<T> curr = head;

 if (curr == null) {

 head = new Node<>();

 head.value = item;

 head.next = null;

 } else {

 while (curr.next != null) {

 curr = curr.next;

 }

 curr.next = new Node<>();

 curr.next.value = item;

 curr.next.next = null;

 }

 }

 public T get(int i) throws IndexOutOfBoundsException {

 if (i < 0 && i >= size()) throw new IndexOutOfBoundsException("Element doesn't exist at location " + i);

 Node<T> curr = head;

 while (i > 0) {

 curr = curr.next;

 i--;

 }

 return curr.value;

 }

 public T remove(int i) {

 if (i < 0 && i >= size()) throw new IndexOutOfBoundsException("Element doesn't exist at location " + i);

 // Implement

 }

 public int size() {

 int size = 0;

 Node<T> curr = head;

 while (curr != null) {

 curr = curr.next;

 size++;

 }

 return size;

 }

}

...

public class Main {

 public static void testList(List<String> list) {

 list.add("a");

 list.add("b");

 list.add("c");

 list.add("d");

 list.println(); // Should print [a,b,c,d]

 System.out.println(list.size()); // Should print 4

 String second = list.get(2);

 System.out.println(second); // Should print c

 list.add("e");

 list.add("f");

 list.add("g");

 list.add("h");

 list.add("i");

 list.add("j");

 list.println(); // Should print [a,b,c,d,e,f,g,h,i,j]

 try {

 list.add("k"); // Should throw an error for DumbList but work for LinkedList

 } catch (IndexOutOfBoundsException e) {

 System.out.println(e.getMessage()); // Should print You cannot add any more item. Only 10 allowed. for DumbLink

 }

 list.remove(0);

 list.println(); // Should print [b,c,d,e,f,g,h,i,j]

 }

 public static void main(String[] args) {

 List<String> list = new DumbList<>();

 //List<String> list = new LinkedList<>();

 testList(list);

 }

}

..

class FastLinkedList<T> extends LinkedList<T> {

 private int size = 0;

 @Override

 public void add(T item) throws IndexOutOfBoundsException {

 //Implement

 }

 @Override

 public T remove(int i) {

 //Implement

 }

 @Override

 public int size() {

 return size;

 }

 public void prettyPrint() {

 //Implement

 }

}

...

public class DumbList<T> implements List<T> {

 private final int MAX_SIZE = 10;

 private Object[] array = new Object[MAX_SIZE];

 private int size = 0;

 public void add(T item) throws IndexOutOfBoundsException {

 if (size + 1 > MAX_SIZE) {

 throw new IndexOutOfBoundsException("You cannot add any more item. Only " + MAX_SIZE + " allowed.");

 } else {

 // Add implementation goes here

 }

 }

 @SuppressWarnings("unchecked")

 public T get(int i) throws IndexOutOfBoundsException {

 return (T) array[i];

 }

 public T remove(int i) {

 if (i < 0 && i >= size) {

 throw new IndexOutOfBoundsException("Invalid index, plesae supply a number between 0 and " + this.size);

 } else {

 @SuppressWarnings("unchecked")

 T toBeRemoved = (T) array[i];

 // Removal Implementation goes here

 return toBeRemoved;

 }

 }

 public int size() {

 return size;

 }

}

